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We used a variational approach adapted to a quantum molecular-dynamics code to determine the best
reference potential for warm dense aluminum. This ab initio variational approach was based on the Gibbs-
Bogolyubov inequality. We used many-body reference systems interacting through inverse-power-law poten-
tials, among which the Coulomb potential was a particular case defining the classical one-component plasma
model. By comparisons with full quantum molecular-dynamics simulations, we found that the Coulomb po-
tential was not always the best reference potential. We calculated the self-diffusion coefficient and the shear
viscosity and discussed the results obtained using the Chisolm-Wallace relation in the warm dense matter
regime.
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I. INTRODUCTION

Warm dense matter �WDM� is a fascinating field for
which little is known both theoretically and experimentally.1

WDM encompasses the first two decades of decreasing den-
sity below solid density up to density of the same order as a
solid with temperatures from room temperature up to a few
electron volts. In the WDM regime, matter is intermediate
between the ordered solid and liquid phases and the highly
disordered gas phase. This complex thermodynamic equilib-
rium regime makes the transition between solid-state physics
to plasma physics. The WDM regime is typically encoun-
tered in planetary interiors, in cool dense stars, and in labo-
ratory experiments.

WDM conditions are very difficult to create and properly
characterize in laboratory. They open a challenging field of
research for both experiments and ab initio calculations. At
the present stage, measurements are scarce2–15 and very few
approaches can reproduce thermodynamic data and transport
coefficients of such media in a self-consistent way.16–20

The most efficient and theoretical way to describe the
WDM regime is the ab initio molecular-dynamics �AIMD�
or quantum molecular-dynamics �QMD� approach.21–26 This
method incorporates at a high level of accuracy both ionic
and electronic structure effects. It treats electron-ion and
electron-electron interactions quantum mechanically in the
framework of the density-functional theory and makes no a
priori assumptions about ion-ion forces and the ionic struc-
ture. Though very powerful, the QMD method has intrinsic
limitations. In fact, from one hand some approximations are
involved, i.e., in the explicit form chosen for the exchange-
correlation functional, in the calculation of the free energy,
and in the pseudopotential approach. Indeed, the pseudopo-
tential transferability could be only partial. From the other
hand, the QMD method approach, due to its high computa-
tional cost, can be only applied to systems composed of a
relatively small number of atoms and to relatively short MD
simulations.

Recently, a method27 has been proposed to face the prob-
lem of calculating the total free energy of the ionic and elec-

tronic system with a QMD code using a reference system for
the ionic subsystem and an ab initio variational approach
based on the Gibbs-Bogolyubov inequality. Using the hard-
sphere �HS� system as a reference system to describe the
ionic structure, this ab initio variational approach has been
shown to be more than ten times faster than QMD simula-
tions. However, calculations were limited to the hard-sphere
system, which may be too approximative to describe the
ionic structure in the WDM regime.

In this paper, we applied the ab initio variational approach
based on the Gibbs-Bogolyubov inequality using many-body
systems interacting through inverse-power-law potentials as
reference systems for the ionic structure. In Sec. II, we
present the QMD code used and the ab initio variational ap-
proach based on the Gibbs-Bogolyubov inequality to calcu-
late the total free energy of the ionic and electronic system.
We detail how this variational method works for inverse-
power-law potentials, including the Coulomb potential. Nu-
merical results and comparisons to QMD simulations and
measurements are performed and discussed in Sec. III for
aluminum. We considered thermodynamic conditions en-
countered in x-ray Thomson scattering experiments.28,29 By
comparisons with full QMD simulations, we show that the
classical one-component plasma, in a uniform background of
opposite charge, is not always representative of the system
under study. This illustrates the extreme difficulty to estimate
a priori a reference system sufficiently close to the system
under study in the WDM regime. Section IV is the conclu-
sion.

II. METHOD

A. CPMD code

We used the CPMD code,30,31 which has been improved by
Alavi et al.24 to study the electronic properties of metallic
systems at finite temperature. This approach is based on the
Mermin density-functional theory.32 At each QMD step, a
self-consistent electronic-structure calculation is performed,
which takes into account the effect of thermal electronic ex-
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citations consistently using fractionally occupied states. The
interaction between ions and valence electrons is described
using a pseudopotential. For a given configuration of Na ions
�RI���R1 , . . . ,RNa

� inside a simulation box of volume Vb

with periodic boundary conditions, the electronic density
n�r� is computed by minimizing the free-energy functional
Fe of the electron gas. By construction, this functional Fe
reproduces the exact finite-temperature density of the Mer-
min functional. Fe, which is self-consistently optimized for
each ionic configuration �RI�, reads33

Fe = � + �Ne + EII, �1�

where

� = −
2

�
ln det�1 + e−��H−��� −� drn�r�	��r�

2
+

�Fxc

�n�r�

+ Fxc. �2�

The factor two in front of the determinant logarithm stems
from considering the spin-unpolarized special case only. �
=1 /kBT with T the electronic temperature and kB the Boltz-
mann constant, � is the chemical potential, and Ne is the
total number of valence electrons. In Eq. �1� we have in-
cluded the classical Coulomb energy of the ions EII. The
one-electron Hamiltonian

H = −
�2

2
+ V�r� �3�

is associated to the effective potential

V�r� = �
I

VeI�r − RI� + ��r� +
�Fxc

�n�r�
, �4�

where VeI is the electron-ion potential, � is the Hartree po-
tential of an electron gas of density n�r�, and Fxc and the
exchange-correlation free energy in the local-density ap-
proximation, respectively.32,34–36 Thermodynamic equilib-
rium between electrons and ions is assumed in the simula-
tions, so that the electronic temperature is equal to the
average ionic temperature. The one-electron Hamiltonian is
diagonalized by means of an efficient variant of the Lanczos
algorithm. The electronic density is expressed in terms of
single-particle orbitals �k

n�r� = �
k

��k�r��2

1 + e��Ek−�� . �5�

The chemical potential is adjusted such that 
drn�r�=Ne.
The electronic orbitals �k are the one-electron eigenstates of
H with eigenvalues Ek

H�k�r� = Ek�k�r� . �6�

H is evaluated with n�r� in this set of equations of the Kohn-
Sham form. The ionic forces are calculated using the
Hellmann-Feynman theorem.37,38 The overall procedure en-
sures a self-consistent calculation of electronic and ionic
structures. Once achieved the thermalization, one can select a
set of uncorrelated QMD configurations on the fly as the
simulation proceeds, and obtain that way, configuration-

average quantities. Note also that the procedure of calculat-
ing configuration-average quantities by averaging over se-
lected arrangements of atoms, and obtain that way results
representative of the finite-temperature sample, induces an
approximative treatment of the electron-phonon interaction.
This “snapshot” treatment of the electron-phonon interaction
makes sense at relatively high temperatures compared to the
Debye temperature. This was the case in Refs. 19, 27, and 33
and for the thermodynamic situations encountered in the
present work.

B. Ab initio variational approach

A complete QDM simulations with the CPMD code can be
quite time consuming. In practice, we often need to have a
reasonably good representation of the interacting system of
ions and electrons at finite temperature T and mass density �
to test an assumption or to study the effect of one parameter.
Recently, a powerful method has been proposed to determine
the total free energy of the electron and ion system using the
Gibbs-Bogolyubov inequality.27 This approach works as fol-
lows. Assuming that we can describe atoms in disordered
matter with a hard-sphere reference system, we dispatch Na
nuclei inside a cubic supercell with periodic boundary con-
ditions at given hard-sphere packing fraction � using Monte
Carlo simulations.39 This is performed for a single element in
thermodynamic equilibrium at given � and T. For such an
ionic configuration, we calculate the electronic free energy
Fe �Eq. �1�� with the CPMD code. We use a very good analytic
expression for the excess ionic entropy per ion obtained by
Carnahan and Starling.40 We select Nc statistically indepen-
dent ionic configurations at given �. We then calculate the
average �Fe� of Fe over the Nc configurations to obtain the
reduced excess free energy fexc of the electron and ion sys-
tem

fexc = ��Fe�/Na +
��4 − 3��
�1 − ��2 . �7�

It can be shown that fexc is an upper bound of the exact
reduced excess free energy of the electron and ion system.
The effective hard-sphere packing fraction �ef f is found by
minimizing fexc as a function of � in Eq. �7�. �ef f is the
optimum hard-sphere packing fraction in the sense of the
Gibbs-Bogolyubov inequality. If we add to fexc in Eq. �7� the
reduced free energy f0 of the ideal gas,41 we obtain the best
total reduced free energy f = f0+ fexc of the electron and ion
system in the sense of the Gibbs-Bogolyubov inequality.27

From f , we can derive in a self-consistent way the equation
of state of the material. This method known as HS-AIMD for
hard-sphere ab initio molecular dynamics27 is faster that
usual quantum molecular-dynamics simulations since no dy-
namics simulations are performed with the ab initio
molecular-dynamics code. The HS-AIMD is a logical follow
on to the work developed in the context of liquid metal42,43

and later adapted and extended in the plasma physics
field.44,45 The HS-AIMD scheme has been compared suc-
cessfully to quantum molecular-dynamics simulations and to
experimental results.27
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Using the hard-sphere system as a reference system may
be too crude. Indeed, the variational method based on the
Gibbs-Bogolyubov inequality to determine the total free en-
ergy of the electron and ion system works for any reference
system described by many-body potential as long as the re-
duced excess configurational entropy of the reference system
is known.27 In this work, we propose to use the classical
one-component plasma �OCP� in a uniform background of
opposite charge and many-body systems interacting through
inverse-power-law potentials.46

When the OCP is used, the particles of the reference sys-
tem interact through the potential

�u�R� =
	

R
, �8�

where the distances are expressed in units of the ion-sphere
radius or Wigner-Seitz radius aWS. aWS is defined by the re-
lation

4


3
�iaWS

3 = 1, �9�

where �i=Na /Vb is the particle density. In this particular
case, a uniform background of charge is introduced to cancel
the divergence due to distance images. Using convergence
technique introduced by Ewald47 and generalized by Nijboer
and De Wette,48 the particles of the reference system interact
through the “Ewald potential” for which Hansen proposed a
useful and accurate approximation based on Kubic harmonic
expansion.46 This approximation is fundamental for com-
puter time requirement. The parameter 	 introduced in Eq.
�8� is a variational parameter. The optimum parameter 	ef f is
determined by minimizing

fexc = ��Fe�/Na − sexc�	� �10�

as a function of 	. In Eq. �10�, sexc�	� is the reduced excess
configurational entropy of the OCP system. We used the
most recent and accurate fit of the OCP equation of state
proposed by De Witt and Slattery49 to evaluate sexc�	�. This
fit was obtained from Monte Carlo simulations. As for the
hard-sphere reference system, we dispatch Na nuclei inside a
cubic supercell with periodic boundary conditions at given
OCP parameter 	 using Monte Carlo simulations to calculate
�Fe� in Eq. �10�. This method is called the OCP-AIMD ap-
proach.

When many-body systems interacting through inverse-
power-law potentials are used as reference systems, the par-
ticles of the reference system interact through the potential

u�R� = ���

R
�n

, �11�

where R is the interparticle distance. In fact, the configura-
tional part of the thermodynamic quantities does not depend
on temperature and density separately, but on their combina-
tion

z = ��i�
3�� �

kBT
�3/n

. �12�

Thus, the properties computed along one isotherm or one
isochore are sufficient to determine the thermodynamics in
the whole density-temperature plane. Since we consider
n
3, we do not need to introduce any uniform
background.46,50 Inverse-power-law potentials defined by Eq.
�11� are sometimes called soft-sphere potentials �SSP�. The
case n=12 is important due to its obvious relation to the
Lennard-Jones potential.51 It is has been thoroughly investi-
gated by computer simulations.52,53 The cases n=4, 6, and 9
have also been studied.54 In this work, the parameter z intro-
duced in Eq. �12� is a natural variational parameter. The op-
timum parameter zef f is determined by minimizing

fexc = ��Fe�/Na − sexc�n,z� �13�

as a function of z at fixed n. In Eq. �13�, sexc�n ,z� is the
reduced excess configurational entropy of the inverse-power-
law system. We have used the variational modified hypernet-
ted chain �VMHNC� �Ref. 55� theory to determine sexc�n ,z�
as a function of n and z. The accuracy of the VMHNC theory
is remarkable when compared to computer simulations.56 In
practice, we have calculated sexc�n ,z� as a function of z for
various values of n up to freezing and fit sexc�n ,z� by a poly-
nomial of order 5 �Ref. 57� in z. As in the previous cases, we
dispatch Na nuclei inside a cubic supercell with periodic
boundary conditions at given parameters z and n using
Monte Carlo simulations to calculate �Fe� in Eq. �13�. We
called this method the SSP-AIMD approach. A similar
method has been proposed by Greeff58 using the reference
potential n=12 applied to the embedded atom model for cop-
per.

C. Free-energy calculation

The excess free energy determined by minimizing fexc in
Eq. �7� and �10�, or �13� is the best approximation to the
exact excess free energy of the system in the sense of the
Gibbs-Bogolyubov inequality. Indeed, there is an exact rela-
tion that gives the free energy F of the system provided the
free energy of the reference system Fref is known.59,60 This
relation reads

F = Fref + �
0

1

d���U��, �14�

where �U is the difference between Fe defined in Eq. �1� and
the total energy of the reference system Uref. Of course, both
Fe and Uref depend on the given configuration of Na ions
�RI�. � �� is the thermal average evaluated in the ensemble of
the “intermediate” system whose total energy U�= �1
−��Uref +�Fe=Uref +��U. In practice, ��U�� is evaluated at
each value of the running coupling constant � using
constant-temperature ab initio molecular dynamics generated
by U�. If we combine this method with the variational ap-
proach, one uses a reference system which is the best in the
sense on the Gibbs-Bogolyubov inequality, i.e., the closest to
the real system whose dynamics is determined by Fe.
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III. RESULTS AND DISCUSSION

A. OCP

Calculations have been done with the CPMD code for alu-
minum using Na=108 and Nc=30. The interaction between
ions and valence electrons has been modeled using a norm-
conserving pseudopotential with s and p nonlocalities.61 The
electronic orbitals were expanded in plane waves with a cut-
off of 16 Ry. This aluminum pseudopotential has been care-
fully tested and successfully used in QMD simulations of
solid and molten aluminum at the melting point62 and to
study metal-insulator transition in dense aluminum.33 The 	
point was used to sample the Brillouin zone of the
supercell.33 We present in Table I the results obtained with
the ab initio variational approach using the OCP system as a
reference system. We present the effective ionic coupling
parameter 	ef f and hard-sphere packing fraction �ef f deter-
mined using the ab initio variational approach. We consid-
ered thermodynamic conditions corresponding to the warm
dense matter regime. Some cases were studied in Ref. 27
using the hard-sphere system as a reference system. We
added cases relevant to recent x-ray Thomson scattering
measurements.28,29 Results are interesting and nontrivial. The
effective ionic coupling parameter 	ef f is very different from
the ionic coupling 	val constant calculated using an ion
charge state equal to three, i.e., the valence of aluminum. The
fact that 	ef f differs from 	val is due to screening and to the
relaxation of electronic density while performing the mini-
mization. From the effective hard-sphere packing fraction
�ef f, one could use the mapping between the hard-sphere and
the OCP systems based on the Gibbs-Bogolyubov
inequality44 to estimate an effective ionic coupling param-
eter. This method should be used with caution. The same
remark applied to the Thomas-Fermi model used to calculate
the average ionization and the screening length.63–65 In this
case, one considers a polarizable background and assumes a
linear screening. This leads to a Yukawa �Y� potential.29 Us-
ing the mapping between the hard-sphere and the OCP sys-
tems based on the Gibbs-Bogolyubov inequality44 to esti-

mate an effective ionic coupling parameter 	TF and an
effective hard-sphere packing fraction �TF can give results in
good agreement with the ab initio variational approach but
this is not always the case. The discrepancy can also be
noticeable. As expected, the effective parameters are increas-
ing function of density at fixed temperature and decreasing
function of temperature at fixed density. When we consider
the sign of �fexc= fexc

OCP− fexc
HS, where fexc

OCP and fexc
HS are the

minimum excess free energy using OCP or HS reference
system, respectively, one can see that fexc

OCP is lower to fexc
HS

only for the last two cases of Table I. This means that the
OCP is better than the HS as a reference system, in the sense
of the Gibbs-Bogolyubov inequality, only for these last two
cases. On this example, the cases, for which the density is
smaller than solid density ��S=2.7 g /cm3�, are better de-
scribed by an HS reference system, whereas the cases, for
which the density is larger than solid density are better de-
scribed by an OCP reference system. Note that the agreement
of the Thomas-Fermi predictions in the Yukawa approxima-
tion are the worst compared to the variational ab initio ap-
proach when the OCP system is the best reference system
compared to the HS system. For the thermodynamic condi-
tions encountered in this work, it has been found sufficient to
determine �ef f with an accuracy of 0.01. The minimum is
well pronounced and a simple cubic fit of the excess free
energy as a function of � is enough to determine �ef f. The
OCP system is more tricky since the minimum is very flat as
a function of 	 and the excess free energy is not always a
symmetric function of 	 close to the minimum. To determine
	ef f, we changed 	 to 	s, where s=0.323064 is the power
used to fit the part that is nonlinear in the excess internal
energy of the OCP,49 and we fit the excess free energy as a
function of 	s by a polynomial of order 5 to localize the
minimum.

In Fig. 1, we consider aluminum at �=3.4 g /cm3 and T
=1.1 eV. We plot the pair-distribution functions obtained
from QMD simulations,29 the ones obtained from the OCP-
AIMD method and the one deduced from the Y model and
the VMHNC code �VMHNC-Y�.55,66 In Fig. 1, 	ef f =30.9 for

TABLE I. Effective ionic coupling parameter 	ef f and hard-sphere packing fraction �ef f determined using
the ab initio variational approach. We give the effective ionic coupling parameter 	TF and the effective
hard-sphere packing fraction �TF obtained using the Thomas-Fermi theory to calculate the average ionization
and the screening length in the Yukawa approximation �Refs. 44 and 63–65� as well as the ionic coupling
parameter 	val obtained using a charge state equal to three. The last column refers to the sign of �fexc

= fexc
OCP− fexc

HS, where fexc
OCP and fexc

HS are the minimum excess free energy using OCP or HS reference system,
respectively.

�
�g /cm3� T 	val 	ef f 	TF �ef f �TF �fexc

2.0 1000 K 860. 81.1 47.0 0.37 0.34 +

2.0 5000 K 172. 25.3 11.3 0.26 0.19 +

1.7 5000 K 163. 20.2 9.1 0.22 0.17 +

1.4 5000 K 153. 12.1 7.0 0.18 0.14 +

1.4 8000 K 95.5 10.4 4.8 0.16 0.11 +

1.4 10000 K 76.4 9.5 4.0 0.15 0.10 +

3.4 1.1 eV 80.4 30.9 9.9 0.29 0.18 −

3.7 5050 K 209. 92.5 25.3 0.40 0.28 −
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the OCP case. The OCP result is in fair agreement with the
QMD simulations. The VMHNC-Y result is in poor agree-
ment with the QMD simulations. Indeed, the effective ionic
coupling parameter that can be obtained from the Yukawa
model44,63–65 is equal to 9.9. This value departs noticeably
from the value of 30.9 obtained using the ab initio varia-
tional approach. The Yukawa model does not describe prop-
erly screening due to electronic structure in the present con-
dition. Similar results are obtained for aluminum at �
=3.7 g /cm3 and T=5050 K. Indeed, one can see that the
QMD pair-distribution functions in these cases are smooth
and trying to represent them by an OCP has meaning. But the
agreement between QMD and OCP tends to deteriorate with
decreasing density. As usual, the variational method based on
the Gibbs-Bogolyubov inequality does its best to match
QMD results. This means that the agreement is good when
the reference system is sufficiently close to the real system.
Note that results are good for the cases for which the OCP
excess free energy is lower to the HS excess free energy.
This indicates that the OCP is a better reference system than
the HS reference system on these examples. This is what we
can see by observing also the pair-distribution functions.

B. Soft-sphere potentials

In Fig. 2 we consider aluminum at �=1.7 g /cm3 and T
=5000 K. We compare pair-distribution functions obtained
with the ab initio variational approach to QMD
simulations.33 We can see that the HS potential ��ef f =0.22�
is in good agreement between the decreasing part, just before
the first minimum, and after the second maximum of g�r�.
However, the first maximum is overestimated and the foot of
the pair distribution is not well reproduced as expected. The
OCP pair-distribution function �	ef f =20.2� really disagrees
with the QMD simulations. The problem is not due to the ab
initio variational approach. This discrepancy can be ex-
plained by the fact that at this thermodynamic condition,
aluminum cannot be represented accurately by an OCP sys-

tem. The effective potential that could give the QMD pair-
distribution function is more complicated than a simple Cou-
lomb potential. In order to clarify this fact, we have used an
inverse-power law potential to describe the reference system.
We have considered n=4–15 considering every integer val-
ues between these two limits. We give in Table II the values
of zef f obtained using the SSP-AIMD method for each value
of n corresponding to the cases presented in Table I when the
HS reference system gives a lower excess free energy than
the OCP reference system. The agreement between various
values of zef f corresponding to different values of n at given
thermodynamic condition is due to roundoff. Like in the case
of the hard-sphere system for �ef f, zef f was determined with
an accuracy of 0.01. A fit of the excess free energy as a
function of z by a cubic polynomial was sufficient to deter-
mine zef f. The HS reference system can be viewed as an
inverse-power-law potential with n=�. The equivalent pa-
rameter zef f for the hard-sphere system is related to �ef f by
zef f =6�ef f /
. The values of �ef f shown in Table I are con-
sistent with the values of zef f presented in Table II for large
values of n. This consistency between the soft-sphere and the
hard-sphere potentials is a stringent test for the method. This
relation between hard-sphere and soft-sphere systems al-
lowed ourselves to refine the determination of �ef f, espe-
cially at �=1.7 g /cm3 and T=5000 K. The excess free en-
ergy as a function of � was found to be very flat around the
minimum in this case.27 We have looked if the excess free
energy is minimum for some value of n, i.e., nmin at given
density and temperature by including the hard-sphere cases.
Results are given in Table II too. When temperature in-
creases at constant density, the pair-distribution function g�r�
becomes broader. This means that the effective pair potential
associated with g�r� is softer. This explains why the case

0 1 2 3 4 5
r [Å]

0

0.5

1

1.5

2

g(
r)

QMD
OCP
VMHNC-Y

FIG. 1. �Color online� Pair-distribution function of aluminum at
�=3.4 g /cm3 and T=1.1 eV. Full QMD simulations �Ref. 29� are
compared to the ab initio variational approach using an OCP system
as a reference system and the VMHNC-Y approach.
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FIG. 2. �Color online� Pair-distribution function of aluminum at
�=1.7 g /cm3 and T=5000 K. Full QMD simulations using the
CPMD code �Ref. 33� are compared to the ab initio variational ap-
proach using an OCP system, a HS system, and a many-body sys-
tem interacting through inverse-power-law potential �n=13� as ref-
erence systems.
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�=2.0 g /cm3 and T=1000 K has a strong HS-like charac-
ter, which is strongly reduced when �=2.0 g /cm3 and T
=5000 K. Equivalent behaviors were found at �
=1.4 g /cm3 between 5000 and 10 000 K.

As an illustration, one can see in Fig. 2 that the QMD
pair-distribution function obtained using an inverse-power-
law potential with n=13 and zef f =0.43 is well reproduced by
the inverse-power-law potential as far as the foot and the
raising part of g�r� is concerned. Then, the first maximum is
underestimated whereas the first minimum is overestimated
by the inverse-power-law potential. The case n=13 with
zef f =0.43 is the best compromise to describe all the features
of the QMD pair-distribution function. One can suggest that
the effective potential that could reproduce the QMD pair-
distribution function has an inverse-power-law component
plus another component that is not easy to determine.

C. Remarks

The cases discussed in this work span a very small part of
the density-temperature plane for such a simple element as
aluminum. However, we can see that the effective pair po-
tential that can be representative enough of the system under
study depends strongly on the thermodynamic situation. A
great variety of behaviors is faced with whereas the thermo-
dynamic domain considered is rather limited in temperature
and density. This enlights the extreme difficulty to represent
a system using an effective potential that can be representa-
tive enough of QMD simulations over an extended part of
the density-temperature domain for multiscale applications.
To do so, several steps are involved if, for instance, one is
interested to obtain temperature and density-dependent effec-
tive potentials derived from QMD simulations. First, one has
to choose a reference potential or a class of reference poten-
tials representative of the material and of the thermodynamic
conditions encountered. Second, one must know the reduced
excess configurational entropy of the reference system that
depends on the parameters defining the reference potential.
For a pair potential, one can use the VMHNC approach to
generate a data basis. For more complex potentials, one can
use simulations, as was done for HS, OCP, Lennard-Jones,
and SSP systems. Third, one has to find the best set of pa-
rameters in the sense of the Gibbs-Bogoluybov inequality

using a QMD code. The best potential is the one that gives the
lowest minimum of the reduced excess free energy. One
problem is related to the computation time needed to gener-
ate a data basis from �classical� simulations and to determine
from �quantum� simulations the best potential that may de-
pend on many parameters. Function minimization in a mul-
tidimensional space can be tricky. Another problem is to de-
cide if the reference system is sufficiently close. It can be
done during a simulation considering the minimum of the
reduced excess free energy or by comparisons with QMD
simulations for pair-distribution functions. However, some
physical sense is required to select or eliminate from the start
a set of potentials. Moreover, one cannot bypass close ex-
amination of results by comparisons with QMD simulations.
Finally, one has to fit the parameters of the reference poten-
tial as function of density and temperature for multiscale
applications and see what happens. The entire process relies
on first principles that combines in a self-consistent way
classical and quantum simulations. This strategy emphasizes
the strong points of each approach and takes advantage of
the computer resource available at the present time. Results
presented in this paper can be understood as a demonstration
of feasibility of extracting effective classical potentials from
QMD simulations based on first principles. QMD codes are
invaluable in this field. In summary, we hope to have shown
that all the process has meaning and is worth applying in
more specific and realistic cases.

D. Effective ionization degree

The average ionization degree Z� is of fundamental inter-
est when the system is ionized. However, it is difficult to
determine it using a quantum molecular-dynamics code,16,17

in an unambiguous way, in the WDM regime. We propose to
determine Z� from the effective ionic coupling plasma pa-
rameter 	ef f. We give in Table III the values of Z� corre-
sponding to the thermodynamic conditions of Table I ob-
tained from 	ef f. We give also the values found using the
Thomas-Fermi model.63 We can see a large difference be-
tween the two ways to estimate Z�. In particular, we should
find Z��3 at high density but we rather find Z��2 from
	ef f. This can be explained by the fact that 	ef f takes into
account screening. Due to screening, Z� deduced from 	ef f is
lower to the valence equal to three in all cases. This means

TABLE II. Effective soft-sphere parameter zef f defined in Eq. �12� and determined using the ab initio variational approach. The integers
are the powers introduced in Eq. �11�. nmin is the value for which the excess free energy is minimum at given density and temperature as a
function of n.

�
�g /cm3�

T
�K�

zef f

nmin4 5 6 7 8 9 10 11 12 13 14 15

2.0 1000 0.93 0.89 0.84 0.80 0.79 0.76 0.75 0.73 0.73 0.72 0.72 0.71 
15

2.0 5000 0.68 0.65 0.60 0.55 0.54 0.53 0.53 0.51 0.51 0.51 0.51 0.50 14

1.7 5000 0.62 0.55 0.52 0.49 0.47 0.46 0.45 0.44 0.44 0.43 0.43 0.43 13

1.4 5000 0.50 0.47 0.43 0.40 0.38 0.38 0.36 0.35 0.35 0.35 0.35 0.35 
15

1.4 8000 0.46 0.40 0.37 0.35 0.34 0.32 0.32 0.32 0.32 0.32 0.31 0.31 13

1.4 10000 0.42 0.38 0.34 0.33 0.31 0.31 0.30 0.30 0.30 0.29 0.29 0.29 13
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that in the thermodynamic conditions presented in Table III,
free electrons cannot be considered as a rigid neutralizing
background with Z��3 since they polarized around ions, Z�

departing notably from the valence equal to three. The OCP
is a highly idealized system that should be considered with
caution when screening is important. The OCP-AIMD ap-
proach is a way to characterize the importance of screening
by looking at the effective ionization degree extracted from
the effective ionic coupling plasma parameter 	ef f. The val-
ues presented in Table III are not easy to guess a priori,
though the trend can be easily explained.

E. Chisolm and Wallace relation

With the ab initio variational approach, we take into ac-
count the ionic structure explicitly. We have thus access to
the ionic transport coefficients, such as the self-diffusion co-
efficient D or the shear viscosity �s. When the reference
system is the HS system, we use the effective HS packing
fraction �ef f and the fits of the HS transport coefficients44

derived from molecular-dynamics simulations.41,67–71 When
the reference system is the OCP, we use the effective ionic
plasma coupling parameter 	ef f and the fits of the OCP trans-
port coefficients44 derived from molecular-dynamics
simulations.72,73

The self-diffusion coefficient D and the shear viscosity �s
obey the Stokes-Einstein relation41,74

D�sb

kBT
= c , �15�

where c is a dimensionless constant and b is a length on the
order of the nearest-neighbor distance. The compact Eq. �15�
is a very efficient tool to have an indicator concerning the
calculation of the self-diffusion coefficient and the shear vis-
cosity. Taking b=1 /�i

1/3 and using experimental values for D
and �s, Chisolm and Wallace74 found that c=0.18�0.02 for
14 different liquid metals. In Table IV, we show the value of
c corresponding to the cases presented in Table I for the HS

��ef f� and the OCP �	ef f� reference systems. One can see that
there is a clear discrepancy between HS and OCP predic-
tions. Indeed, at melting ��=2.37 g /cm3 and T=933 K�, we
found that c=0.18 using the HS system, so in agreement
with the value given by Chisolm and Wallace. However, we
found c�0.15 using the OCP system. The value obtained
with the HS for dense cases are close 0.18. They depart from
0.18 for dilute cases only. This can be explained by the de-
pendency of c with respect to � and �ef f, c increasing with
decreasing density. The HS system results do not appear to
contradict the Chisolm and Wallace relation. This indicates
that one tends to underestimate c using the OCP system.
Since the formulas used to estimate D and �s are based on
accurate molecular-dynamics simulations,72,73 the OCP sys-
tem is not well suited to describe the transport properties of
WDM. The OCP system should be used with caution as a
reference system both to describe the thermodynamic prop-
erties but also the transport properties of WDM.

IV. CONCLUSION

Using a quantum molecular-dynamics code, we employed
a variational approach based on the Gibbs-Bogolyubov in-
equality to determine the best reference potential for warm
dense aluminum. We used many-body reference systems in-
teracting through inverse-power-law potentials. By compari-
sons with full quantum molecular-dynamics simulations, we
found that the Coulomb potential was not always the best
reference potential. This work emphasizes the extreme diffi-
culty to describe ions using analytical potential in the WDM
regime.
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TABLE III. Effective ionization degree deduced from the
Thomas-Fermi model �Ref. 63� and the effective ionic coupling
parameter 	ef f. In the latter case, expressing the ion-sphere radius
aWS and kBT in atomic units, the effective ionization degree is equal
to �	ef faWSkBT, where kB is the Boltzmann constant and T is the
temperature.

�
�g /cm3� T ZOCP

� ZTF
�

2.0 1000 K 0.92 2.13

2.0 5000 K 1.15 2.15

1.7 5000 K 1.06 1.99

1.4 5000 K 0.84 1.82

1.4 8000 K 0.99 1.84

1.4 10000 K 1.06 1.85

3.4 1.1 eV 1.86 2.75

3.7 5050 K 2.0 2.82

TABLE IV. Value of the dimensionless parameter c
=D�sb /kBT obtained using the hard-sphere �cHS� or the OCP �cOCP�
reference systems. kB is the Boltzmann constant, T is the tempera-
ture, D is the self-diffusion coefficient, and �s is the shear viscosity.
b is a length on the order of the nearest neighbor and is related to
the particle density �i by b=1 /�i

1/3.

�
�g /cm3� T cOCP cHS

2.0 1000 K 0.12 0.16

2.0 5000 K 0.08 0.16

1.7 5000 K 0.09 0.17

1.4 5000 K 0.12 0.21

1.4 8000 K 0.13 0.23

1.4 10000 K 0.15 0.25

3.4 1.1 eV 0.08 0.16

3.7 5050 K 0.13 0.17
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